If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-8x-25=0
a = 5; b = -8; c = -25;
Δ = b2-4ac
Δ = -82-4·5·(-25)
Δ = 564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{564}=\sqrt{4*141}=\sqrt{4}*\sqrt{141}=2\sqrt{141}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{141}}{2*5}=\frac{8-2\sqrt{141}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{141}}{2*5}=\frac{8+2\sqrt{141}}{10} $
| 63-f=63 | | |3x-8|+|4x+1|=3 | | -|x+5|-1=6 | | 52-z=31 | | 1/4x+9=17 | | (4x+6)(7x+2)=0 | | 27=42-d | | 16+3/4t=16 | | (5x+10)/6x-10*5x-x=48 | | 21^2=17^2+x^2 | | 2+9z=6+14z | | 1/6m-3=9 | | (40-2x)(30-2x)=600 | | 3x-1=x+9+x+1 | | 4n^2+8n+1=0 | | 52.02-n=38.45 | | 10+4x=5-5x | | 6x^2-6=90 | | 4.9x^2-20x+84=0 | | 28-4(x-5)=-4x=3 | | 28-4(x-5)=-4x=5 | | 28-4(x-5)=-4x=13 | | x+2x-80=0 | | 3x-3/4=-18 | | 2z/7-1=-8 | | 1=x+01 | | x+(x*0,5)=1000000 | | 10+15t=100 | | 8x-24=2x+30 | | (54-2x)(35-2x)=0 | | (5-7x)(7-7x)=0 | | 6x+25=8-+9 |